
Package: litedown (via r-universe)
September 9, 2024

Type Package

Title A Lightweight Version of R Markdown

Version 0.2

Description Render R Markdown to Markdown (without using 'knitr'), and
Markdown to lightweight HTML/LaTeX documents with the
'commonmark' package (instead of 'Pandoc'). Some missing
Markdown features in 'commonmark' are also supported, such as
raw HTML/LaTeX blocks, LaTeX math, superscripts, subscripts,
footnotes, element attributes, and appendices, but not all
'Pandoc' Markdown features are (or will be) supported. With
additional JavaScript and CSS, you can also create HTML slides
and articles. This package can be viewed as a trimmed-down
version of R Markdown and 'knitr'. It does not aim at rich
Markdown features or a large variety of output formats (the
primary formats are HTML and LaTeX). Book and website projects
of multiple input documents are also supported.

Depends R (>= 3.2.0)

Imports utils, commonmark (>= 1.9.1), xfun (>= 0.47)

Suggests knitr, rbibutils, rmarkdown (>= 2.18), rstudioapi, tinytex,
yaml

License MIT + file LICENSE

URL https://github.com/yihui/litedown

BugReports https://github.com/yihui/litedown/issues

VignetteBuilder litedown

RoxygenNote 7.3.2

Encoding UTF-8

Roxygen list(markdown = TRUE)

Repository https://r-multiverse.r-universe.dev

RemoteUrl https://github.com/yihui/litedown

RemoteRef v0.2

RemoteSha 6cec1c2ea1db1b27ffe2103bfd33dc0e4e4e7a8c

1

https://github.com/yihui/litedown
https://github.com/yihui/litedown/issues

2 litedown-package

Contents

litedown-package . 2
crack . 3
engines . 4
fuse . 5
fuse_book . 7
fuse_env . 9
fuse_site . 9
html_format . 10
markdown_options . 11
reactor . 13
roam . 14
timing_data . 15

Index 17

litedown-package A lightweight version of R Markdown

Description

Markdown is a plain-text format that can be converted to HTML and other formats. This package
can render R Markdown to Markdown, and then to an output document format. The main differ-
ences between this package and rmarkdown are that it does not use Pandoc or knitr (i.e., fewer
dependencies), and it also has fewer Markdown features.

Author(s)

Maintainer: Yihui Xie <xie@yihui.name> (ORCID)

See Also

Useful links:

• https://github.com/yihui/litedown

• Report bugs at https://github.com/yihui/litedown/issues

https://orcid.org/0000-0003-0645-5666
https://github.com/yihui/litedown
https://github.com/yihui/litedown/issues

crack 3

crack Parse R Markdown or R scripts

Description

Parse input into code chunks, inline code expressions, and text fragments: crack() is for parsing R
Markdown, and sieve() is for R scripts.

Usage

crack(input, text = NULL)

sieve(input, text = NULL)

Arguments

input A character vector to provide the input file path or text. If not provided, the
text argument must be provided instead. The input vector will be treated as
a file path if it is a single string, and points to an existing file or has a filename
extension. In other cases, the vector will be treated as the text argument input.
To avoid ambiguity, if a string should be treated as text input when it happens
to be an existing file path or has an extension, wrap it in I(), or simply use the
text argument instead.

text A character vector as the text input. By default, it is read from the input file if
provided.

Details

For R Markdown, a code chunk must start with a fence of the form ```{lang}, where lang is the
language name, e.g., r or python. The body of a code chunk can start with chunk options written in
"pipe comments", e.g., #| eval = TRUE, echo = FALSE (the CSV syntax) or #| eval: true (the
YAML syntax). An inline code fragment is of the form `{lang} source` embedded in Markdown
text.

For R scripts, text blocks are extracted by removing the leading #' tokens. All other lines are treated
as R code, which can optionally be separated into chunks by consecutive lines of #| comments
(chunk options are written in these comments). If no #' or #| tokens are found in the script, the
script will be divided into chunks that contain smallest possible complete R expressions.

Value

A list of code chunks and text blocks:

• Code chunks are of the form list(source, type = "code_chunk", options, comments,
...): source is a character vector of the source code of a code chunk, options is a list
of chunk options, and comments is a vector of pipe comments.

4 engines

• Text blocks are of the form list(source, type = "text_block", ...). If the text block
does not contain any inline code, source will be a character string (lines of text concatenated
by line breaks), otherwise it will be a list with members that are either character strings (normal
text fragments) or lists of the form list(source, options, ...) (source is the inline code,
and options contains its options specified inside `{lang, ...}`).

Both code chunks and text blocks have a list member named lines that stores their starting and
ending line numbers in the input.

Note

For simplicity, sieve() does not support inline code expressions. Text after #' is treated as pure
Markdown.

It is a pure coincidence that the function names crack() and sieve() weakly resemble Carson
Sievert’s name, but I will consider adding a class name sievert to the returned value of sieve() if
Carson becomes the president of the United States someday, which may make the value radioactive
and introduce a new programming paradigm named Radioactive Programming (in case Reactive
Programming is no longer fun or cool).

Examples

library(litedown)
parse R Markdown
res = crack(c("```{r}\n1+1\n```", "Hello, `pi` = `{r} pi` and `e` = `{r} exp(1)`!"))
str(res)
evaluate inline code and combine results with text fragments
txt = lapply(res[[2]]$source, function(x) {

if (is.character(x))
x else eval(parse(text = x$source))

})
paste(unlist(txt), collapse = "")

parse R code
res = sieve(c("#' This is _doc_.", "", "#| eval=TRUE", "# this is code", "1 + 1"))
str(res)

engines Language engines

Description

Get or set language engines for evaluating code chunks and inline code.

Usage

engines(...)

Arguments

... Named values (for setting) or unnamed values (for getting).

fuse 5

Details

An engine function should have three arguments:

• x: An element in the crack() list (a code chunk or a text block).

• inline: It indicates if x is from a code chunk or inline code.

• ...: Currently unused but recommended for future compatibility (more arguments might be
passed to the function).

The function should return a character value.

Value

The usage is similar to reactor(): engines('LANG') returns an engine function for the lan-
guage LANG, and engines(LANG = function(x, inline = FALSE, ...) {}) sets the engine for a
language.

Examples

litedown::engines() # built-in engines

fuse Render Markdown, R Markdown, and R scripts

Description

The function fuse() extracts and runs code from code chunks and inline code expressions in R
Markdown, and interweaves the results with the rest of text in the input, which is similar to what
knitr::knit() and rmarkdown::render() do. It also works on R scripts in a way similar to
knitr::spin(). The function fiss() extracts code from the input, and is similar to knitr::purl().

The function mark() renders Markdown to an output format via the commonmark package.

Usage

fuse(input, output = NULL, text = NULL, envir = parent.frame(), quiet = FALSE)

fiss(input, output = ".R", text = NULL)

mark(input, output = NULL, text = NULL, options = NULL, meta = list())

Arguments

input A character vector to provide the input file path or text. If not provided, the
text argument must be provided instead. The input vector will be treated as
a file path if it is a single string, and points to an existing file or has a filename
extension. In other cases, the vector will be treated as the text argument input.
To avoid ambiguity, if a string should be treated as text input when it happens
to be an existing file path or has an extension, wrap it in I(), or simply use the
text argument instead.

6 fuse

output An output file path or a filename extension (e.g., .html, .tex, .xml, .man,
.markdown, or .txt). In the latter case, the output file path will use the extension
on the same base filename as the input file if the input is a file. If output is
not character (e.g., NA), the results will be returned as a character vector instead
of being written to a file. If output is NULL or an extension, and the input is a
file path, the output file path will have the same base name as the input file, with
an extension corresponding to the output format. The output format is retrieved
from the first value in the output field of the YAML metadata of the input (e.g.,
litedown::html_format will generate HTML output). The output argument
can also take an output format name (possible values are html, latex, xml, man,
commonmark, and text). If no output format is detected or provided, the default
is HTML.

text A character vector as the text input. By default, it is read from the input file if
provided.

envir An environment in which the code is to be evaluated. It can be accessed via
fuse_env() inside fuse().

quiet If TRUE, do not show the progress bar. If FALSE, the progress bar will be shown
after a number of seconds, which can be set via a global option litedown.progress.delay
(the default is 2). THe progress bar output can be set via a global option
litedown.progress.output (the default is stderr()).

options Options to be passed to the renderer. See markdown_options() for details. This
argument can take either a character vector of the form "+option1 option2-option3"
(use + or a space to enable an option, and - to disable an option), or a list of the
form list(option1 = value1, option2 = value2, ...). A string "+option1"
is equivalent to list(option1 = TRUE), and "-option2" means list(option2
= FALSE). Options that do not take logical values must be specified via a list,
e.g., list(width = 30).

meta A named list of metadata. Elements in the metadata will be used to fill out
the template by their names and values, e.g., list(title = ...) will replace
the $title$ variable in the template. See the Section “YAML metadata” in the
vignette vignette('intro', package = 'litedown') for supported variables.

Value

The output file path if output is written to a file, otherwise a character vector of the rendered output
(wrapped in xfun::raw_string() for clearer printing).

See Also

sieve(), for the syntax of R scripts to be passed to fuse().

The spec of GitHub Flavored Markdown: https://github.github.com/gfm/

Examples

library(litedown)
doc = c("```{r}", "1 + 1", "```", "", "$\\pi$ = `{r} pi`.")
fuse(doc)
fuse(doc, ".tex")

https://github.github.com/gfm/

fuse_book 7

fiss(doc)

mark(c("Hello _World_!", "", "Welcome to **litedown**."))
if input appears to be a file path but should be treated as text, use I()
mark(I("This is *not* a file.md"))
that's equivalent to
mark(text = "This is *not* a file.md")

output to a file
(mark("_Hello_, **World**!", output = tempfile()))

convert to other formats
mark("Hello _World_!", ".tex")
mark("Hello _**`World`**_!", "xml")
mark("Hello _**`World`**_!", "text")

fuse_book Fuse multiple R Markdown documents to a single output file

Description

This is a helper function to fuse() .Rmd files and convert all their Markdown output to a single
output file, which is similar to bookdown::render_book(), but one major differences is that all
HTML output is written to one file, instead of one HTML file per chapter.

Usage

fuse_book(input = ".", output = NULL, envir = parent.frame())

Arguments

input A directory or a vector of file paths. By default, all .Rmd/.md files under the
current working directory are used as the input, except for filenames that start
with . or _ (e.g., _foo.Rmd), or .md files with the same base names as .Rmd files
(e.g., bar.md will not be used if bar.Rmd exists). For a directory input, the file
search will be recursive if input ends with a slash (i.e., sub-directories will also
be searched). If a file named index.Rmd or index.md exists, it will always be
treated as the first input file. Input files can also be specified in the config file
_litedown.yml (in the input field under book).

output An output file path or a filename extension (e.g., .html, .tex, .xml, .man,
.markdown, or .txt). In the latter case, the output file path will use the extension
on the same base filename as the input file if the input is a file. If output is
not character (e.g., NA), the results will be returned as a character vector instead
of being written to a file. If output is NULL or an extension, and the input is a
file path, the output file path will have the same base name as the input file, with
an extension corresponding to the output format. The output format is retrieved
from the first value in the output field of the YAML metadata of the input (e.g.,
litedown::html_format will generate HTML output). The output argument

8 fuse_book

can also take an output format name (possible values are html, latex, xml, man,
commonmark, and text). If no output format is detected or provided, the default
is HTML.

envir An environment in which the code is to be evaluated. It can be accessed via
fuse_env() inside fuse().

Details

If the output format (html_format() or latex_format()) needs to be customized, the settings
should be written in the config file _litedown.yml, e.g.,

output:
litedown::html_format:
options:
toc:
depth: 4

litedown::latex_format:
meta:
documentclass: "book"

In addition, you can configure the book via the book field, e.g.,

book:
new_session: true
subdir: false
pattern: "[.]R?md$"
chapter_before: "Information before a chapter."
chapter_after: "This chapter was generated from `$input$`."

The option new_session specifies whether to render each input file in the current R session or
a separate new R session; chapter_before and chapter_after specify text to be added to the
beginning and end of each file, respectively, which accepts some variables (e.g., $input$ is the
current input file path).

Value

An output file path or the output content, depending on the output argument.

fuse_env 9

fuse_env The fuse() environment

Description

Get the environment passed to the envir argument of fuse(), i.e., the environment in which code
chunks and inline code are evaluated.

Usage

fuse_env()

Value

When called during fuse(), it returns the envir argument value of fuse(). When called outside
fuse(), it returns the global environment.

fuse_site Fuse R Markdown documents individually under a directory

Description

Run fuse() on R Markdown documents individually to generate a website.

Usage

fuse_site(input = ".")

Arguments

input The root directory of the site, or a vector of input file paths.

Details

If a directory contains a config file _litedown.yml, which has a YAML field site, the directory
will be recognized as a site root directory. The YAML field output will be applied to all R Mark-
down files (an individual R Markdown file can provide its own output field in YAML to override
the global config). For example:

site:
rebuild: "outdated"
pattern: "[.]R?md$"

output:
litedown::html_format:
meta:

10 html_format

css: ["@default"]
include_before: "[Home](/) [About](/about.html)"
include_after: "© 2024 | [Edit]($input$)"

The option rebuild determines whether to rebuild .Rmd files. Possible values are:

• newfile: Build an input file if it does not have a .html output file.

• outdated: Rebuild an input file if the modification time of its .html output file is newer than
the input.

Value

Output file paths (invisibly).

html_format Output formats in YAML metadata

Description

The primary output formats of litedown are HTML and LaTeX. These output formats can be con-
figured in the output field of the YAML metadata of the Markdown document.

Usage

html_format(options = NULL, meta = NULL, template = NULL, keep_md = FALSE)

latex_format(
options = NULL,
meta = NULL,
template = NULL,
keep_md = FALSE,
keep_tex = FALSE,
latex_engine = "xelatex",
citation_package = "natbib"

)

Arguments

meta, options Arguments to be passed to mark().

template A template file path.
keep_md, keep_tex

Whether to keep the intermediate ‘.md’ and ‘.tex’ files generated from ‘.Rmd’.

latex_engine The LaTeX engine to compile ‘.tex’ to ‘.pdf’.
citation_package

The LaTeX package for processing citations. Possible values are none, natbib,
and biblatex.

markdown_options 11

Details

The output format functions have two purposes. The main purpose is to make it possible (and
easier) to configure the output formats using YAML metadata inside a document, e.g.,

output:
litedown::html_format:
options:
toc: true

keep_md: true
litedown::latex_format:
latex_engine: pdflatex

The secondary purpose is for rmarkdown users to render R Markdown via knitr::knit() and
mark() (instead of Pandoc), and also use the Knit button in RStudio. Although you can render R
Markdown to Markdown via either knitr::knit() or fuse(), please note that the two ways are
not 100% compatible with each other. If you choose to use litedown, we recommend that you use
fuse() instead. If you want fuse() to work with the Knit button in RStudio, you have to add a
special field to YAML:

knit: litedown:::knit

Without this field, RStudio will use knitr to render R Markdown.

Value

An R Markdown output format.

markdown_options Markdown rendering options

Description

A list of all options to control Markdown rendering. Options that are enabled by default are marked
by a + prefix, and those disabled by default are marked by -.

Usage

markdown_options()

Details

See vignette('intro', package = 'litedown') for the full list of options and their documenta-
tion.

12 markdown_options

Value

A character vector of all available options.

Examples

all available options
litedown::markdown_options()

library(litedown)

toc example
mkd <- c("# Header 1", "p1", "## Header 2", "p2")

mark(mkd, options = "+number_sections")
mark(mkd, options = "+number_sections+toc")

hard_wrap example
mark("foo\nbar\n")
mark("foo\nbar\n", options = "+hardbreaks")

latex math example
mkd <- c(

"`x` is inline math x!", "", "Display style:", "", "$$x + y$$", "",
"\\begin{align}

a^{2}+b^{2} & = c^{2}\\\\
\\sin^{2}(x)+\\cos^{2}(x) & = 1
\\end{align}"
)

mark(mkd)
mark(mkd, options = "-latex_math")

table example
mark("
First Header	Second Header
Content Cell | Content Cell
Content Cell | Content Cell
")

caption
mark("
a	b
A	9

Table: A table _caption_.
")

no table
mark("
First Header | Second Header

reactor 13

------------- | -------------
Content Cell | Content Cell
Content Cell | Content Cell
", options = '-table')

autolink example
mark("https://www.r-project.org/")
mark("https://www.r-project.org/", options = "-autolink")

strikethrough example
mark("~~awesome~~")
mark("~~awesome~~", options = "-strikethrough")

superscript and subscript examples
mark("2^10^")
mark("2^10^", options = "-superscript")
mark("H~2~O")
mark("H~2~O", options = "-subscript")

code blocks
mark('```r\n1 + 1;\n```')
mark('```{.r}\n1 + 1;\n```')
mark('```{.r .js}\n1 + 1;\n```')
mark('```{.r .js #foo}\n1 + 1;\n```')
mark('```{.r .js #foo style="background:lime;"}\n1 + 1;\n```')
mark('````\nA _code chunk_:\n\n```{r, echo=TRUE}\n1 + 1;\n```\n````')

raw blocks
mark('```{=html}\n<p>raw HTML</p>\n```')
mark('```{=latex}\n<p>raw HTML</p>\n```')

filter out HTML tags
mkd = '<style>a {}</style><script type="text/javascript">console.log("No!");</script>\n[Hello](#)'
mark(mkd)
tagfiler doesn't work: https://github.com/r-lib/commonmark/issues/15
mark(mkd, options = "tagfilter")

reactor Get and set chunk options

Description

Chunk options are stored in an environment returned by reactor(). Option values can be queried
by passing their names to reactor(), and set by passing named values.

Usage

reactor(...)

14 roam

Arguments

... Named values (for setting) or unnamed values (for getting).

Value

With no arguments, reactor() returns an environment that stores the options, which can also be
used to get or set options. For example, with opts = reactor(), opts$name returns an option
value, and opts$name = value sets an option to a value.

With named arguments, reactor() sets options and returns a list of their old values (e.g., reactor(echo
= FALSE, fig.width = 8)). The returned list can be passed to reactor() later to restore the op-
tions.

With unnamed arguments, reactor() returns option values after received option names as input. If
one name is received, its value is returned (e.g., reactor('echo')). If multiple names are received,
a named list of values is returned (e.g., reactor(c('echo', 'fig.width'))). A special case is
that if only one unnamed argument is received and it takes a list of named values, the list will be
used to set options, e.g., reactor(list(echo = FALSE, fig.width = 8)), which is equivalent to
reactor(echo = FALSE, fig.width = 8).

Examples

get options
litedown::reactor("echo")
litedown::reactor(c("echo", "fig.width"))

set options
old = litedown::reactor(echo = FALSE, fig.width = 8)
litedown::reactor(c("echo", "fig.width"))
litedown::reactor(old) # restore options

use the environment directly
opts = litedown::reactor()
opts$echo
mget(c("echo", "fig.width"), opts)
ls(opts) # built-in options

roam Preview Markdown and R Markdown files

Description

Launch a web page to list and preview files under a directory.

Usage

roam(dir = ".", live = TRUE, ...)

timing_data 15

Arguments

dir A directory path.

live Whether to enable live preview. If enabled, the browser page will be automati-
cally updated upon modification of local files used by the page (e.g., the Mark-
down file or external CSS/JS/image files). If disabled, you can manually refresh
the page to fully re-render it.

... Other arguments to be passed to xfun::new_app().

Details

Markdown files will be converted to HTML and returned to the web browser directly without writing
to HTML files, to keep the directory clean during the preview. Clicking on a filename will bring up
an HTML preview. To see its raw content, click on the link on its file size instead.

Value

A URL (invisibly) for the preview.

timing_data Get the timing data of code chunks and text blocks in a document

Description

Timing can be enabled via the chunk option time = TRUE (e.g., set reactor(time = TRUE) in the
first code chunk). After it is enabled, the execution time for code chunks and text blocks will be
recorded. This function can be called to retrieve the timing data later in the document (e.g., in the
last code chunk).

Usage

timing_data(threshold = 0, sort = TRUE, total = TRUE)

Arguments

threshold A number (time in seconds) to subset data with. Only rows with time above this
threshold are returned.

sort Whether to sort the data by time in the decreasing order.

total Whether to append the total time to the data.

Value

A data frame containing input file paths, line numbers, chunk labels, and time. If no timing data is
available, NULL is returned.

16 timing_data

Note

By default, the data will be cleared after each call of fuse() and will not be available outside
fuse(). To store the data persistently, you can set the time option to a file path. This is necessary if
you want to get the timing data for multiple input documents (such as all chapters of a book). Each
document needs to point the time option to the same path. When you do not need timing any more,
you will need to delete this file by yourself.

Index

crack, 3
crack(), 3, 5

engines, 4

fiss (fuse), 5
fuse, 5
fuse(), 6–9, 11, 16
fuse_book, 7
fuse_env, 9
fuse_env(), 6, 8
fuse_site, 9

html_format, 10
html_format(), 8

I(), 3, 5

knitr::knit(), 5, 11
knitr::purl(), 5
knitr::spin(), 5

latex_format (html_format), 10
latex_format(), 8
litedown (litedown-package), 2
litedown-package, 2

mark (fuse), 5
mark(), 10, 11
markdown_options, 11
markdown_options(), 6

option, 6

reactor, 13, 15
reactor(), 5
rmarkdown::render(), 5
roam, 14

sieve (crack), 3
sieve(), 3, 4, 6

stderr(), 6

timing_data, 15

xfun::new_app(), 15
xfun::raw_string(), 6

17

	litedown-package
	crack
	engines
	fuse
	fuse_book
	fuse_env
	fuse_site
	html_format
	markdown_options
	reactor
	roam
	timing_data
	Index

